Techniques for Turing Machine
Construction

Techniques

Storage in the finite control

The finite control can be used to hold a finite amount of information. To do so, the
state is written as a pair of elements, one exercising control and the other storing a
symbol. It should be emphasized that this arrangement is for conceptual purposes
only. No modification in the definition of the Turing machine has been made.

Example 7.3 Consider a Turing machine M that looks at the first input symbol,
records it in its finite control, and checks that the symbol does not appear else-
where on its input. Note that M accepts a regular set, but M will serve for
demonstration purposes:

M = (Q, {0, 1}, {0, 1, B}, &, [go, B], B, F),

where Q is {go. g1} x {0, 1, B}. That is, Q consists of the pairs [go, 0], [go. 1].
lgo. Bl [gq:. Ol [q.. 1], and [gq,, B]. The set F is {[q,, B]}. The intention is that the
first component of the state controls the action, while the second component
“remembers™ a symbol.

We define 6 as follows.

1) a) é([go, Bl. 0) = ([4:. O], O, R), b) &([qo. Bl. 1) = ([g:. 1], 1. R).
Initially, g, is the control component of the state, and M moves right. The first
component of M’s state becomes g,, and the first symbol seen is stored in the
second component.

2) a) o([4:, 0], 1) = ([g:. O}, 1, R), b) 3([g:. 1], 0) = ([g:. 1], O, R).
If M has a Ostored and sees a | or vice versa, then M continues to move to the

right.

3) a) ({41, 0}, B) = ([9., B, O, L), b) 4([gs, 1}, B) = ([g1, B}, 0, L).
M enters the final state [g,, B] if it reaches a blank symbol without having
first encountered a second copy of the leftmost symbol.

If M reaches a blank in state [q,, 0], or [g,, 1], it accepts. For state [g,, 0] and
symbol 0 or for state [g,, 1] and symbol 1, § is not defined. Thus if M encounters
the tape symbol stored in its state, M halts without accepting.

In genceral, we can allow the finite control to have k components, all but one of
which store information.

Multiple Tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for
any finite k. This arrangement is shown in Fig. 7.4, with k = 3. The symbols on the
tape are considered k-tuples, onec component for each track.

v i o I | 1 1 S B B
B B B B 1 0 1 B B B . e
B i 0) | 0 I B /] B
.
Finite
control

Fig. 7.4 A three-track Turing machine.

Example 7.4 The tape in Fig. 7.4 belongs to a Turing machine that takes a
binary input greater than 2, written on the first track, and determines whether it is
a prime. The input is surrounded by ¢ and $ on the first track. Thus, the allowable
input symbols are [¢, B, B, [0, B, B]. [1, B, B], and [$, B, B]. These symbols can
be identified with ¢, O, 1, and S, respectively, when viewed as input symbols. The
blank symbol can be identified with [B, B, B].

To test il its input is a prime, the TM first writes the number two in binary on
the second track and copies the first track onto the third. Then the second track is
subtracted, as many times as possible, from the third track, effectively dividing the
third track by the second and leaving the remainder.

If the remainder is zero, the number on the first track is not a prime. If the
remainder is nonzero, the number on the second track is increased by one. If the
second track equals the first, the number on the first track is a prime, because it
cannot be divided by any number lying properly between one and itself. If the

second 1s less than the first, the whole operation is repeated for the new number on
the second track.

Checking off Symbols

Checking off symbols is a useful trick for visualizing how a TM recognizes lan-
guages defined by repeated strings, such as

{ww|winX*, {wey|lwandyinEZ*, w#y} or {ww®f|win Z*}.

It is also useful when lengths of substrings must be compared, such as in the
languages

{a'b'|i = 1} or {a'bc*|i+jorj+k}
We introduce an extra track on the tape that holds a blank or \/. The ./

appears when the symbol below it has been considered by the TM in one of its
comparisons.

Example 7.5 Consider a Turing machine M = (Q, £, I', 4, g, B, F), which recog-
nizes the language {wew|w in (a + b)*}. Let
Q=1{{g.d)|4=491.42.--..qs and d=a,b,or B}.
The second component of the state is used to store an input symbol,
E={[B d]|d=a,b, or c}.

The input symbol [B, d] is identified with d. Remember that the two “tracks” are
just conceptual tools; that is, [B, d] is just another “name” for d:

r={X,d]|X=Bor/ and d=ab,c orB}
go=[9:, B, and F={[gs B]};

[B, B} is identificd with B, the blank symbol. Ford = aor b and e = a or b we
define o as follows.

1) (g1, B), [B. d)) = ({42, d}. [/, d]. R).
M checks the symbol scanned on the tape, stores the symbol in the finite
control, and moves right.

2) 5([‘?2v d]’ [B' e]) = ([‘h’ d]’ [B’ e]’ R)'

M continues to move right, over unchecked symbols, looking for c.

3) o((gz, 4], [B,]) = ([9: d}. [B, c]. R).

On finding ¢, M enters a state with first component g;.

4) ((gs, 4], [\/. e]) = ([gs, 4, [\/ e], R).
M moves right over checked symbols.

5) 8((as,), [B. d]) = ({4, B). [/ d, L).
M encounters an unchecked symbol. If the unchecked symbol matches the
symbol stored in the finite control, M checks it and begins moving left. If the
symbols disagree, M has no next move and so halts without accepting. M also
halts if in state g, it reaches [B, B] before finding an unchecked symbol.

6) ((as. B). [/. 1) = ([4s, B}, [\/. d}, L).
M moves left over checked symbols,

7) o([qa, B, [B, c]) = ([g5. B, [B. c}, L).
M encounters the symbol c¢.

8) o([gs. B], [B. d]) = ((ge, B]. [B, d], L).
If the symbol immediately to the left of ¢ is unchecked, M proceeds left to find
the rightmost checked symbol.

9) 6([ge, B}, [B. d]) = ([4s, B, [B, d], L).
M proceeds left.

’

10) ollgs. Bl I/ d]) = (lq:, Bl |/, 4], K).
M encounters a checked symbol and moves right to pick up another symbol
for comparison. The first component of state becomes ¢, again.

11) é([gs. B} [V/.) = ([g+. B. [/ d). R).
M will be in state [gs, B] immediately after crossing ¢ moving left. (See rule 7.)
If a checked symbol appears immediately to the left of ¢, all symbols to the left
of ¢ have been checked. M must test whether all symbols to the right have
been checked. If so, they must have compared properly with the symbols to
the left of ¢, so M will accept.

12) é([g-. B), [B, <]) = ([gs. B}, [B. c]. R).

M moves right over c.
13) 8([gs. B}, [/ d]) = ([gs. B, [/, d), R).

M moves to the right over checked symbols.
14) 8([gs, B], [B. B]) = ([4. B}, [/, Bl. L).

If M finds [B, B], the blank, it halts and accepts. If M finds an unchecked
symbol when its first component of state is gg, it halts without accepting.

SHIFTING OVER

Shifting over

A Turing machine can make space on its tape by shifting all nonblank symbols a
finitc number of cells to the right. To do so, the tape head makes an excursion 1o
the right, repeatedly storing the symbols read in its finite control and replacing

them with symbols read from cells to the left. The TM can then return to the
vacated cells and print symbols of its choosing. If space is available, it can push
blocks of symbols left in a similar manner.

Example 7.6 We construct part of a Turing machine, M = (Q, Z, T, J, q,, B, F),
which may occasionally have a need to shift nonblank symbols two cells to the
right. We suppose that M’s tape does not contain blanks between nonblanks, so
when it reaches a blank it knows to stop the shifting process. Let Q contain states
of the form [g, A, A;] for g = q, or ¢,, and 4, and A4, in T. Let X be a special
symbol not used by M except in the shifting process. M starts the shifting process
in state [q,, B, B]. The relevant portions of the function § are as follows.

1) d([q,, B, B}, A,) = ([g,, B, A,], X, R) for A, inT —{B, X}.
M stores the first symbol read in the third component of its state. X is printed
on the cell scanned, and M moves to the right,

2) o(lgss B, A}, A2) = ([q1s A1 A2), X, R) for A, and A;in T — (B, X}.
M shifts the symbol in the third component to the second component, stores
the symbol being read in the third component, prints an X, and moves right.

3) 6([(1', AI’ Az], AJ) = ([qh Az, A;], AI’ R) fOl‘ Al' Az, al‘ld A3 in
I —-{B, X}.
M now repeatedly reads a symbol A, stores it in the third component of
state, shifts the symbol previously in the third component, 4,, to the second
component, deposits the previous second component, 4,, on the cell scanned,
and moves right. Thus a symbol will be deposited two cells to the right of its
original position.

4) 5([q,. Ay, A;), B)= ([gy, A3, B], A;, R) for A, and A;in I —{B, X}.
When a blank is seen on the tape, the stored symbols are deposited on the
tape.

5) o([gy, Ay, B], B) = ((q2, B, B]. 4,, L).
After all symbols have been deposited, M sets the first component of state to
q, and moves left to find an X, which marks the rightmost vacated cell.

6) 8((q2. B. B], A) = ([q2, B, B}, A, L) for AinT —(B X}.
M moves left until an X is found. When X is found, M transfers to a state that
we have assumed exists in Q and resumes its other functions.

Subroutine

As with programs, a “modular” or “top-down” design is facilitated if we use
iubroutines to define elementary processes. A Turing machine can simulate any
ype of subroutine found in programming languages, including recursive
procedures and any of the known parameter-passing mechanisms. We shall here

describe only the use of parameterless, nonrecursive subroutines, but even these
are quite powerful tools.

The general idea is to write part of a TM program to serve as a subroutine; it
will have a designated initial state and a designated return state which temporarily
has no move and which will be used to effect a return to the calling routine. To
design a TM that “calls” the subroutine, a new set of states for the subroutine is
made, and a move from the return state is specified. The call is effected by entering
the initial state for the subroutine, and the return is effected by the move from the
return state.

Example 7.7 The design of a TM M to implement the total recursive function
“multiplication™ is given below. M starts with 010" on its tape and ends with O™
surrounded by blanks. The general idea is to place a 1 after 0™10” and then copy
the block of n 0’s onto the right end m times, each time erasing one of the m O’s.
The result is 10710™. Finally the prefix 10”1 is erased, leaving 0™". The heart of the
algorithm is a subroutine COPY, which begins in an ID 0™ 14,0710/ and eventually
enters an ID 0™1gs0"10'*". COPY is defined in Fig. 7.5. In state g,, on sceing a 0,
M changes it to a 2 and enters state g,. In state g,, M moves right, to the next
blank, deposits the 0, and starts left in state g,. In state gy, M moves left toa 2. On
reaching a 2, state g, is entered and the process repeats until the 1 is encountered,
signaling that the copying process is complete. State g, is used to convert the 2's
back to 0’s, and the subroutine halts in gs.

0 1 2 B
qy {q2. 2, R) (ge. 1, L)
g2 (g2, 0. R) (g2, 1, R) (g3. 0, L)
@ (45,0, L) (gs. 1, L) (a1- 2, R)
da {as, 1. R) (qa. 0, L)

Fig. 7.5 & for subroutine COPY.

To complete the program for multiplication, we add states to convert initial
1D 4,0™10" to BO™ ™ '14,0"1. That is, we need the rules

(g0, 0) = (46, B, R),
3(qe, 0) = (g6, O, R),
3(qes 1) = (g1, 1, R).

Additional states are needed to convert an 1D BO" ig0"10% to
B** '™~ 114,0710%, which restarts COPY, and to check whether i = m, that is,
all m 0's have been erased, In the case that i = m, the leading 10”1 is crased and the
computation halts in state g,,. These moves are shown in Fig. 7.6.

0 1 2 B
qS (q'h 0, L)
47 (ql' lv L)
qs (49- 0, L) (q“,' B, R)
s (95, 0, L) (40, B. R)
410 (911, B, R)

411 (911, B, R) (g2, B, R)
Fig. 7.6 Additional moves for TM performing multiplication.

Note that we could make more than one call to a subroutine if we rewrote the
subroutine using a new set of states for each call.

